Altimetry with reflected GPS signal: results from a lakeside experiment

Cinzia Zuffada, Stephen Lowe, George Hajj, Michael Lough, Robert Treuhaft, Lawrence Young, Sien Wu, Mark Smith, Jesse Lerma*

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 90109

*Sony Precision Technology La Habra, CA 90631

Presented at the Ocean Winds Workshop, Brest, France, 20 June 2000

OUTLINE

- EXPERIMENT DESCRIPTION AND RATIONALE
- REFLECTION GEOMETRY
- EXTRACTION OF OBSERVABLE FROM RAW DATA
- PHASE MODEL
- HEIGHT DETERMINATION FROM PHASE
- PRELIMINARY CONCLUSIONS ON MEASUREMENT ACCURACY

DYNAMICS OF GPS REFLECTIONS

OCTOBER 7, 1999 PDT 4-6 pm

REFLECTION GEOMETRY

PATH DIFFERENCE = 2 H sin (θ)

TYPICAL DATA AFTER COHERENT INTEGRATION COMPLEX TIME SERIES

NOTE VARIABILITY IN THE REGION OF REFLECTION

EXAMPLE PHASE DATA COMPARED WITH PHASE MODEL

EACH TIME POINT CORRESPONDS TO ONE SPECIFIC 20-MSEC STREAM SHOWN PREVIOUSLY. TIME REFERENCE IS THE BEGINNING OF A DATA FILE

PHASE MODEL

• ANALYTICAL MODEL DERIVED FROM IDEAL CORRELATOR SHAPE AND ASSUMPTION OF COHERENT REFLECTION

$$\Phi = ATAN(\frac{\frac{A_r \Lambda(t_r, -t_r)}{A_d \Lambda(t_r, -t_d)} \sin\{\omega(t_r, -t_d)\}}{1 + \frac{A_r \Lambda(t_r, -t_r)}{A_d \Lambda(t_r, -t_d)} \cos\{\omega(t_r, -t_d)\}}) t_r - t_d < 1chip$$

$$\Phi = \tan\{\omega(t_r - t_d)\} \ t_r - t_d > 1 chip$$

 t_d = peak time of direct, t_r = true peak time of reflected, $t_{r'}$ = estimated peak time of reflected, A_d = peak amplitude of direct, A_r = peak amplitude of reflected

Argument of sin and cos is obtained from the range difference between direct and reflected, assuming a starting time

DOPPLER MODEL

• THE DERIVATIVE OF THE RANGE DIFFERENCE IS THE DOPPLER

DOPPLER SENSITIVITY TO HEIGHT

VARIATION IS RELATIVE TO HEIGHT CHOSEN FOR THE PREVIOUS PLOT, WHICH IN TURN WAS CHOSEN TO MATCH DATA AND MODEL

HEIGHT DETERMINATION FROM DOPPLER

COMPARISON OF FOURIER TRANSFORM OF DATA AND MODEL, CORRECT HEIGHT AND SUFFICIENTLY LONG DATA STREAM WILL RESULT IN MATCH TO REQUIRED HEIGHT

SURFACE HEIGHT ERROR BEHAVIOR

• FROM PHASE MODEL PARTIALS WE OBTAIN COVARIANCE MATRIX FOR HEIGHT VERSUS DATA NOISE (0.1 RMS)

CM-LEVEL ACCURACY OBTAINED IN LESS THAN 100 SEC